Architectured materials

Design, fabrication and characterization

andrei.constantinescu@polytechnique.edu konstantinos.danas@polytechnique.edu

GDR ArchiMeta 2024 June 11

Architectured materials Structures and Microstructures

Outline

Ordered [micro]structures

Topological shape optimisation

- Shape derivative with level set function
- Examples
 - 2D multilayer materials
 - Panels with periodic microstructure
 - Thick shells with IGA

Random microstructures

- Morphology and regularity : topology and randomness
- Example
 - Lattice with surface roughness
 - Random cellular materials

Implicitly-defined Shape Level Set Method

$\int \phi(\mathbf{x}) < 0$	if	$\mathbf{x}\in S$	(material)	
$\left\{ \phi(\mathbf{x}) = 0 \right\}$	if	$\mathbf{x} \in \partial S$	(boundary)	
$igl(\phi(\mathbf{x}) > 0$	if	$\mathbf{x} \in \mathcal{D} ackslash S$	(void) 🤇)

$$\mathbf{n}(\mathbf{x}) = rac{
abla \phi(\mathbf{x})}{|
abla \phi(\mathbf{x})|}$$

Implicitly-defined Shape Shape evolution

S(t)

 $\phi(t, \mathbf{x}(t)) = 0, \quad \forall t \in [0, T].$

$$\frac{\partial \phi}{\partial t}(t, \mathbf{x}) + \dot{\mathbf{x}}(t) \cdot \nabla \phi(t, \mathbf{x}) = 0, \qquad \forall t, \ \forall \mathbf{x} \in \partial S(t).$$

$$\frac{\partial \phi}{\partial t}(t,\mathbf{x}) + \theta(t,\mathbf{x}(t)) \cdot \nabla \phi(t,\mathbf{x}) = 0, \qquad \forall t, \ \forall \mathbf{x} \in \partial S(t), \qquad \theta(t,\mathbf{x}) = V(t,\mathbf{x}) \mathbf{n}(t,\mathbf{x}),$$

Hamilton-Jacobi

$$rac{\partial \phi}{\partial t}(t,\mathbf{x}) + V(t,\mathbf{x}) \left|
abla \phi(t,\mathbf{x})
ight| = 0, \qquad orall t, \ orall \mathbf{x} \in \mathcal{D}.$$

Shape optimization Algorithm

Data: Initialise a level set function ϕ_0 corresponding to an initial shape S^0 ;

for $k \ge 0$ iterate until convergence do

Redistance ϕ_k into the signed distance function d_{S^k} using eq. (2.4.9);

Compute \mathbf{u}_k and \mathbf{p}_k , solutions of the state (2.3.9) and adjoint (2.3.10) equations for the domain S^k ;

Compute the shape gradient $\mathcal{J}(S^k)(\theta^k)$ for the domain S^k using eq. (2.4.13);

Deform the domain S^k by solving the Hamilton-Jacobi equation (2.4.6);

// Shape S^{k+1} is characterised by the level set ϕ_{k+1} after a time step Δt_k

// The time step
$$\Delta t_k$$
 is chosen so that $\mathcal{J}(S^{k+1}) \leq \mathcal{J}(S^k)$

end

Optimal Poisson ratio Plane orthotropic materials

C	<u>i</u> t	$\mathbb{C}^{H}(\omega)$		$ u^t$	$ u^H$	Shape ω
0.1 -	-0.1 0]	$\begin{bmatrix} 0.12 & -0.05 \end{bmatrix}$	0]			
$\begin{bmatrix} -0.1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.1 & 0 \\ 0 & G \end{bmatrix}$	$\begin{bmatrix} -0.05 & 0.04 \\ 0 & 0 \end{bmatrix}$	0 0.006	-1.	$\{-1.25, -0.42\}$	
$\begin{bmatrix} 0.1 & - \\ -0.1 & 0 \end{bmatrix}$	$\begin{bmatrix} -0.1 & 0 \\ 0.1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.12 & -0.05 \\ -0.05 & 0.12 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	-1.	-0.42	
0	0 G	[0 0	0.003			
$\begin{bmatrix} 0.2 & - \\ -0.1 & 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -0.1 & 0 \\ 0.2 & 0 \\ 0 & C \end{bmatrix}$	$\begin{bmatrix} 0.19 & -0.09 \\ -0.09 & 0.19 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	-0.5	-0.47	

Example 3: Fabricated result

Example 3: Input design

Multilayer Materials 2D plane orthotropic

$$C_{1111}^* = \frac{E_1^*}{1 - \nu_{12}^* \nu_{21}^*}, \qquad C_{2222}^* = \frac{E_2^*}{1 - \nu_{12}^* \nu_{21}^*}, \qquad C_{1122}^* = \frac{\nu_{21}^* E_1^*}{1 - \nu_{12}^* \nu_{21}^*}, \qquad \nu_{12}^* = \frac{C_{1122}^*}{C_{2222}^*}, \qquad \nu_{21}^* = \frac{C_{1122}^*}{C_{1111}^*}.$$

Stability Bounds

$$|\nu_{12}| \le \sqrt{\frac{E_1}{E_2}}, \qquad |\nu_{21}| \le \sqrt{\frac{E_2}{E_1}}, \qquad 1 - \nu_{12} \nu_{21} > 0.$$

Optimal Poisson ratio

 $\rho_1 = 47\%$

Plane orthotropic materials

Milton Kohn Bounds

Panels

Optimised microstructure for Extention - Bending Coupling

Agnelli et al. CMAME 2022

Panels Optimised microstructure for Extention - Bending Coupling

(c)

Agnelli et al. CMAME 2022

1.

-

Ribbon Network

Agnelli et al. doi.org/10.1016/j.eml.2020.101089

Agnelli et al. doi.org/10.1016/j.eml.2020.101089

Shape shifting ribbon structures

(a)

(b)

Agnelli, Tricarico, Constantinescu.arXiv preprint arXiv:2009.09741 (2020).

Isogeometric Analysis - Thick Shell Stiffness Optimization with volume constraint

Outline

Ordered [micro]structures

Topological shape optimisation

- Shape derivative with level set function
- Examples
 - 2D multilayer materials
 - Panels with periodic microstructure
 - Thick shells with IGA

Random microstructures

- Morphology and regularity : topology and randomness
- Example
 - Lattice with surface roughness
 - Random cellular materials

Architectured Ia

Level set (a) Real grain texture Topological support and randomness

(b) Synthetic grain texture

$$\phi(x;\theta,\omega) = (1-\alpha) \cdot \phi_1(x;\theta,\omega) + \alpha \cdot \phi_2(x;\theta,\omega)$$

Khistenko et al. CMAME 2022

Material parameters

Level set : Topological support and randomness

- Stochastic Optimization
 - Bayesian Inference
 - PYMC, <u>https://www.pymc.io/</u>
 - Cost functional
 - Misfit of Two Point Correlation, Lineal Path, ...

Khistenko et al. CMAME 2022

Material Morphology

Architectured lattice

Level set

Topological support and randomness

Khistenko et al. CMAME 2022

Architectured lattice

Elasto-plastic material behaviour

10

0 -5 -10

-15 15

-10

(c) Scheme of the cross-sections

Young's modulus n_x 10 15 -15

(d) Young's modulus of the defect-free structure

⁻¹⁵ -10 -5

0.1

Cellular Materials

ordred or random: geometry generation

Hooshmand-Ahoor et al. IJSS 2024

Cellular Materials Large strain compression

Hooshmand-Ahoor et al. IJSS 2024

\$\$\$\$\$

Gyroid

Spinodoid

RSA

Cellular Materials

Property map

Fig. 6. A property space map of Young's modulus versus relative density ρ comparing the present geometries of M-Voronoi, RSA, Gyroid, and Spinodoid to other closed- and open-cell foams of similar density and to nano- and macro-lattices.

Hooshmand-Ahoor et al. IJSS 2024

Materials and microstructures

- Polymer
- Metals
- Composites MRE

Laurence Bodelot Eric Charkaluk Kostas Danas Julie Diani Patrick Le Tallec

Andrei Constantinescu

Conclusions & Perspectives

- Optimal architectures
- Effect of randomness
- What properties can be reached ?
- What is printable ?